Abstract
Satellite passive microwave remote sensing has been extensively used to estimate snow depth (SD) and snow water equivalent (SWE) across both regional and continental scales. However, the presence of forests causes significant uncertainties in the estimations of snow parameters. Forest transmissivity is one of the most important parameters for describing the microwave radiation and scattering characteristics of forest canopies. Although many researchers have constructed models for the functional relationship between forest transmissivity and forest vegetation parameters (e.g., stand growth and accumulation), such relationships are strongly limited by the inversion accuracy of vegetation parameters, forest distribution types, and scale-transformation effects in terms of regional or global scale applications. In this research, we propose a pixel-wise forest transmissivity estimation model (Pixel-wise γ Model) based on long-term series satellite brightness temperature (TB) data for the satellite remote sensing inversion of snow parameters. The model performance is evaluated and applied in SD inversion. The results show that the SD inversion errors RMSE and Bias are 9.8 cm and −1.5 cm, respectively; the SD inversion results are improved by 41% and 84% after using the Pixel-wise γ Model, compared with the forest transmissivity model applied in the GlobSnow v3.0 product. The proposed forest transmissivity model does not depend on forest cover parameters and other ground measurement parameters, which greatly improves its application scope and simplicity.
Funder
The Chinese Academy of Sciences
National Natural Science Foundation of China
The Changchun Science and Technology Development Plan Project
Basic Resources Survey Project of National Science and Technology
Subject
General Earth and Planetary Sciences
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献