Improved Lithological Map of Large Complex Semi-Arid Regions Using Spectral and Textural Datasets within Google Earth Engine and Fused Machine Learning Multi-Classifiers

Author:

Serbouti ImaneORCID,Raji Mohammed,Hakdaoui Mustapha,El Kamel Fouad,Pradhan BiswajeetORCID,Gite Shilpa,Alamri Abdullah,Maulud Khairul Nizam AbdulORCID,Dikshit AbhirupORCID

Abstract

In this era of free and open-access satellite and spatial data, modern innovations in cloud computing and machine-learning algorithms (MLAs) are transforming how Earth-observation (EO) datasets are utilized for geological mapping. This study aims to exploit the potentialities of the Google Earth Engine (GEE) cloud platform using powerful MLAs. The proposed method is implemented in three steps: (1) Based on GEE and Sentinel 2A imagery (spectral and textural features), that cover 1283 km2 area, a variety of lithological maps are generated using five supervised classifiers (random forest (RF), support vector machine (SVM), classification and regression tree (CART), minimum distance (MD), naïve Bayes (NB)); (2) the accuracy assessments for each class are performed, by estimating overall accuracy (OA) and kappa coefficient (K) for each classifier; (3) finally, the fusion of classification maps is performed using Dempster–Shafer Theory (DST) for mapping lithological units of the northern part of the complex Paleozoic massif of Rehamna, a large semi-arid region located in the SW of the western Moroccan Meseta. The results were quantitatively compared with existing geological maps, enhanced color composite and validated by field survey investigation. In comparison of individual classifiers, the SVM yields better accuracy of nearly 88%, which was 12% higher than the RF MLA; otherwise, the parametric MLAs produce the weakest lithological maps among other classifiers, with a lower OA of approximately 67%, 54% and 52% for CART, MD and NB, respectively. Noticeably, the highest OA value of 96% is achieved for the proposed approach. Therefore, we conclude that this method allows geoscientists to update previous geological maps and rapidly produce more precise lithological maps, especially for hard-to-reach regions.

Funder

Centre for Advanced Modelling and Geospatial Information Systems (CAMGIS), University of Technology Sydney

Researchers Supporting Project, King Saud University, Riyadh, Saudi Arabia

UKM YSDChair of Sustainability

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3