Author:
Sousa Margarida,Carvalho Alexandra
Abstract
Dynamic Bayesian networks (DBN) are powerful probabilistic representations that model stochastic processes. They consist of a prior network, representing the distribution over the initial variables, and a set of transition networks, representing the transition distribution between variables over time. It was shown that learning complex transition networks, considering both intra- and inter-slice connections, is NP-hard. Therefore, the community has searched for the largest subclass of DBNs for which there is an efficient learning algorithm. We introduce a new polynomial-time algorithm for learning optimal DBNs consistent with a breadth-first search (BFS) order, named bcDBN. The proposed algorithm considers the set of networks such that each transition network has a bounded in-degree, allowing for p edges from past time slices (inter-slice connections) and k edges from the current time slice (intra-slice connections) consistent with the BFS order induced by the optimal tree-augmented network (tDBN). This approach increases exponentially, in the number of variables, the search space of the state-of-the-art tDBN algorithm. Concerning worst-case time complexity, given a Markov lag m, a set of n random variables ranging over r values, and a set of observations of N individuals over T time steps, the bcDBN algorithm is linear in N, T and m; polynomial in n and r; and exponential in p and k. We assess the bcDBN algorithm on simulated data against tDBN, revealing that it performs well throughout different experiments.
Subject
General Physics and Astronomy
Reference27 articles.
1. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference;Pearl,2014
2. Dynamic Bayesian Networks: Representation, Inference and Learning;Murphy,2002
3. A dynamic Bayesian network approach to protein secondary structure prediction
4. Dynamic Bayesian networks as prognostic models for clinical patient management
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献