Polynomial-Time Algorithm for Learning Optimal BFS-Consistent Dynamic Bayesian Networks

Author:

Sousa Margarida,Carvalho Alexandra

Abstract

Dynamic Bayesian networks (DBN) are powerful probabilistic representations that model stochastic processes. They consist of a prior network, representing the distribution over the initial variables, and a set of transition networks, representing the transition distribution between variables over time. It was shown that learning complex transition networks, considering both intra- and inter-slice connections, is NP-hard. Therefore, the community has searched for the largest subclass of DBNs for which there is an efficient learning algorithm. We introduce a new polynomial-time algorithm for learning optimal DBNs consistent with a breadth-first search (BFS) order, named bcDBN. The proposed algorithm considers the set of networks such that each transition network has a bounded in-degree, allowing for p edges from past time slices (inter-slice connections) and k edges from the current time slice (intra-slice connections) consistent with the BFS order induced by the optimal tree-augmented network (tDBN). This approach increases exponentially, in the number of variables, the search space of the state-of-the-art tDBN algorithm. Concerning worst-case time complexity, given a Markov lag m, a set of n random variables ranging over r values, and a set of observations of N individuals over T time steps, the bcDBN algorithm is linear in N, T and m; polynomial in n and r; and exponential in p and k. We assess the bcDBN algorithm on simulated data against tDBN, revealing that it performs well throughout different experiments.

Publisher

MDPI AG

Subject

General Physics and Astronomy

Reference27 articles.

1. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference;Pearl,2014

2. Dynamic Bayesian Networks: Representation, Inference and Learning;Murphy,2002

3. A dynamic Bayesian network approach to protein secondary structure prediction

4. Dynamic Bayesian networks as prognostic models for clinical patient management

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3