Information-Theoretical Criteria for Characterizing the Earliness of Time-Series Data

Author:

Lemus Mariano,Beirão João P.,Paunković NikolaORCID,Carvalho Alexandra M.,Mateus Paulo

Abstract

Biomedical signals constitute time-series that sustain machine learning techniques to achieve classification. These signals are complex with measurements of several features over, eventually, an extended period. Characterizing whether the data can anticipate prediction is an essential task in time-series mining. The ability to obtain information in advance by having early knowledge about a specific event may be of great utility in many areas. Early classification arises as an extension of the time-series classification problem, given the need to obtain a reliable prediction as soon as possible. In this work, we propose an information-theoretic method, named Multivariate Correlations for Early Classification (MCEC), to characterize the early classification opportunity of a time-series. Experimental validation is performed on synthetic and benchmark data, confirming the ability of the MCEC algorithm to perform a trade-off between accuracy and earliness in a wide-spectrum of time-series data, such as those collected from sensors, images, spectrographs, and electrocardiograms.

Publisher

MDPI AG

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3