Decoupled Early Time Series Classification Using Varied-Length Feature Augmentation and Gradient Projection Technique

Author:

Chen HuilingORCID,Zhang Ye,Tian Aosheng,Hou Yi,Ma Chao,Zhou Shilin

Abstract

Early time series classification (ETSC) is crucial for real-world time-sensitive applications. This task aims to classify time series data with least timestamps at the desired accuracy. Early methods used fixed-length time series to train the deep models, and then quit the classification process by setting specific exiting rules. However, these methods may not adapt to the length variation of flow data in ETSC. Recent advances have proposed end-to-end frameworks, which leveraged the Recurrent Neural Networks to handle the varied-length problems, and the exiting subnets for early quitting. Unfortunately, the conflict between the classification and early exiting objectives is not fully considered. To handle these problems, we decouple the ETSC task into the varied-length TSC task and the early exiting task. First, to enhance the adaptive capacity of classification subnets to the data length variation, a feature augmentation module based on random length truncation is proposed. Then, to handle the conflict between classification and early exiting, the gradients of these two tasks are projected into a unified direction. Experimental results on 12 public datasets demonstrate the promising performance of our proposed method.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Physics and Astronomy

Reference48 articles.

1. Time Series Classification: A review of Algorithms and Implementations;Faouzi;Mach. Learn. (Emerg. Trends Appl.),2022

2. Deep learning for time series classification: a review

3. Hybrid outlier detection (HOD) method in sensor data for human activity classification

4. IF-ConvTransformer: A Framework for Human Activity Recognition Using IMU Fusion and ConvTransformer;Zhang;Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies,2022

5. Seismic Intensity Estimation Using Multilayer Perceptron for Onsite Earthquake Early Warning

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Early classification of time series data: overview, challenges, and opportunities;Data Fusion Techniques and Applications for Smart Healthcare;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3