Abstract
In order to achieve the dual needs of single-phase vibration reduction and lightweight, a square honeycomb acoustic metamaterials with local resonant Archimedean spirals (SHAMLRAS) is proposed. The independent geometry parameters of SHAMLRAS structures are acquired by changing the spiral control equation. The mechanism of low-frequency bandgap generation and the directional attenuation mechanism of in-plane elastic waves are both explored through mode shapes, dispersion surfaces, and group velocities. Meanwhile, the effect of the spiral arrangement and the adjustment of the equation parameters on the width and position of the low-frequency bandgap are discussed separately. In addition, a rational period design of the SHAMLRAS plate structure is used to analyze the filtering performance with transmission loss experiments and numerical simulations. The results show that the design of acoustic metamaterials with multiple Archimedean spirals has good local resonance properties, and forms multiple low-frequency bandgaps below 500 Hz by reasonable parameter control. The spectrograms calculated from the excitation and response data of acceleration sensors are found to be in good agreement with the band structure. The work provides effective design ideas and a low-cost solution for low-frequency noise and vibration control in the aeronautic and astronautic industries.
Funder
National Natural Science Foundation of China
State Key Laboratory of Mechanical Behavior and System Safety of Traffic Engineering Structures
Aeronautical Science Foundation of China
Subject
General Materials Science
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献