Low-frequency band gap design of acoustic metamaterial based on cochlear structure

Author:

Ruan Haifeng,Yu Peng,Hou Jiahong,Li DongORCID

Abstract

Abstract In this paper, a new chiral spiral structure based on the cochlear structure is proposed. The chiral spiral structure consists of four orthogonally oriented cochlear structures with the same geometric parameters connected at the inner endpoints of the four cochlear structures. Based on the Bloch’s theory and finite element method, the band gap characteristics of the proposed chiral spiral structure are studied. The effects of ligament bending angle (θ), the ratio of arc radius of cochlear contour (α), the ligament thickness (tc ), and the level of the chiral spiral structure (n) on the chiral spiral structure are discussed. The results show that the two-level chiral spiral structure (n= 2) has the best band gap characteristics when θ = 180° and α = 0.45. With the decrease of tc and the increase of n, the opening frequency of the first band gap gradually decreases. When n = 22, the chiral spiral structure has the lowest opening frequency, 1.91 Hz. The existence of the band gap is verified through the low amplitude elastic wave transmission tests. The distribution of the iso-frequency lines indicates that with the increase n, the propagation of elastic waves of the chiral spiral structure shows more distinct directivity, which provides a basis for the propagation control of elastic waves. These findings can provide new design ideas and directions for low-frequency vibration and noise control.

Funder

Liaoning Natural Science Foundation Program

The Fundamental Research Funds for the Central Universities

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics,Civil and Structural Engineering,Signal Processing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3