Abstract
Wind power’s increasing penetration into the electricity grid poses several challenges for power system operators, primarily due to variability and unpredictability. Highly accurate wind predictions are needed to address this concern. Therefore, the performance of hybrid forecasting approaches combining autoregressive integrated moving average (ARIMA), machine learning models (SVR, RF), wavelet transform (WT), and Kalman filter (KF) techniques is essential to examine. Comparing the proposed hybrid methods with available state-of-the-art algorithms shows that the proposed approach provides more accurate prediction results. The best model is a hybrid of KF-WT-ML with an average R2 score of 0.99967 and RMSE of 0.03874, followed by ARIMA-WT-ML with an average R2 of 0.99796 and RMSE of 0.05863 over different datasets. Moreover, the KF-WT-ML model evaluated on different terrains, including offshore and hilly regions, reveals that the proposed KF based hybrid provides accurate wind speed forecasts for both onshore and offshore wind data.
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献