Forecasting Wind Speed Using the Proposed Wavelet Neural Network

Author:

Mohammed Monem A.1ORCID,Ahmed Layla A.12ORCID

Affiliation:

1. Department of Statistics and Informatics, College of Administration and Economics, University of Sulaimani, Kurdistan Region, Iraq

2. Department of Mathematics, College of Education, University of Garmian, Kurdistan Region, Iraq

Abstract

Wind energy is one of the speedy processing technologies in the energy generation industry and the most economical methods of electrical power generation. For the reliability of system, it is wanted to improve highly appropriate wind speed forecasting methods. The wavelet transform is a powerful mathematical technique that converts an analyzed signal into a time-frequency representation. This technique has proven useful in a nonstationary time series forecasting. The aims of this study are to propose a wavelet function by derivation of a quotient from two different Lucas polynomials, as well as a comparison between an artificial neural network (ANN) and wavelet-artificial neural network (WNN). We used the proposed wavelet, Mexican hat, Morlet, Gaussian, Haar, Daubechies, and Coiflet to transform the wind speed data using the continuous wavelet transform (CWT). MATLAB software was used to implement the CWT and ANN. The proposed models were applied in the meteorological field to forecast the daily wind speed data that were collected from the meteorological directorate of Sulaymaniyah which is a city located in the Kurdistan region of Iraq for the period (Jan. 2011–Dec. 2020). Five different performance criteria during calibration and validation, the root mean square error ( R M S E ), mean square error ( M S E ), mean absolute percentage error M A P E , mean absolute error M A E , and coefficient of determination ( R 2 ), were evaluated. When studying, analyzing, and comparing these models, the results of the study concluded that the proposed wavelet-ANN is the best result ( M S E = 0.00072 , R M S E = 0.02683 , M A P E = 2.32400 , and R 2 = 0.99983 .

Publisher

Hindawi Limited

Subject

Modeling and Simulation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3