YOLO Algorithm for Long-Term Tracking and Detection of Escherichia Coli at Different Depths of Microchannels Based on Microsphere Positioning Assistance

Author:

Sun LeshengORCID,Xu Ying,Rao ZhikangORCID,Chen Juntao,Liu Zhe,Lu Ning

Abstract

The effect evaluation of the antibiotic susceptibility test based on bacterial solution is of great significance for clinical diagnosis and prevention of antibiotic abuse. Applying a microfluidic chip as the detection platform, the detection method of using microscopic images to observe bacteria under antibiotic can greatly speed up the detection time, which is more suitable for high-throughput detection. However, due to the influence of the depth of the microchannel, there are multiple layers of bacteria under the focal depth of the microscope, which greatly affects the counting and recognition accuracy and increases the difficulty of relocation of the target bacteria, as well as extracting the characteristics of bacterial liquid changes under the action of antibiotics. After the focal depth of the target bacteria is determined, although the z-axis can be controlled with the help of a three-dimensional micro-operator, the equipment is difficult to operate and the long-term changes of the target bacteria cannot be tracked quickly and accurately. In this paper, the YOLOv5 algorithm is adopted to accurately identify bacteria with different focusing states of multi-layer bacteria at the z-axis with any focal depth. In the meantime, a certain amount of microspheres were mixed into bacteria to assist in locating bacteria, which was convenient for tracking the growth state of bacteria over a long period, and the recognition rates of both bacteria and microspheres were high. The recognition accuracy and counting accuracy of bacteria are 0.734 and 0.714, and the two recognition rates of microspheres are 0.910 and 0.927, respectively, which are much higher than the counting accuracy of 0.142 for bacteria and 0.781 for microspheres with the method of enhanced depth of field (EDF method). Moreover, during long-term bacterial tracking and detection, target bacteria at multiple z-axis focal depth positions can be recorded by the aid of microspheres as a positioning aid for 3D reconstruction, and the focal depth positions can be repositioned within 3–10 h. The structural similarity (SSIM) of microscopic image structure differences at the same focal depth fluctuates between 0.960 and 0.975 at different times, and the root-mean-square error (RMSE) fluctuates between 8 and 12, which indicates that the method also has good relocation accuracy. Thus, this method provides the basis for rapid, high-throughput, and long-term analysis of microscopic changes (e.g., morphology, size) of bacteria detection under the addition of antibiotics with different concentrations based on microfluidic channels in the future.

Funder

National Natural Science Foundation of China

Zhejiang Provincial Scientific Research Project

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3