The Relationship between the Spatial Arrangement of Pigments and Exciton Transition Moments in Photosynthetic Light-Harvesting Complexes

Author:

Pishchalnikov Roman Y.ORCID,Chesalin Denis D.ORCID,Razjivin Andrei P.ORCID

Abstract

Considering bacteriochlorophyll molecules embedded in the protein matrix of the light-harvesting complexes of purple bacteria (known as LH2 and LH1-RC) as examples of systems of interacting pigment molecules, we investigated the relationship between the spatial arrangement of the pigments and their exciton transition moments. Based on the recently reported crystal structures of LH2 and LH1-RC and the outcomes of previous theoretical studies, as well as adopting the Frenkel exciton Hamiltonian for two-level molecules, we performed visualizations of the LH2 and LH1 exciton transition moments. To make the electron transition moments in the exciton representation invariant with respect to the position of the system in space, a system of pigments must be translated to the center of mass before starting the calculations. As a result, the visualization of the transition moments for LH2 provided the following pattern: two strong transitions were outside of LH2 and the other two were perpendicular and at the center of LH2. The antenna of LH1-RC was characterized as having the same location of the strongest moments in the center of the complex, exactly as in the B850 ring, which actually coincides with the RC. Considering LH2 and LH1 as supermolecules, each of which has excitation energies and corresponding transition moments, we propose that the outer transitions of LH2 can be important for inter-complex energy exchange, while the inner transitions keep the energy in the complex; moreover, in the case of LH1, the inner transitions increased the rate of antenna-to-RC energy transfer.

Funder

Ministry of Science and Higher Education of the Russian Federation

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3