The architecture and function of the light-harvesting apparatus of purple bacteria: from single molecules to in vivo membranes

Author:

Cogdell Richard J.,Gall Andrew,Köhler Jürgen

Abstract

1. Introduction 2292. Structures 2342.1 The structure of LH2 2342.2 Natural variants of peripheral antenna complexes 2422.3 RC–LH1 complexes 2423. Spectroscopy 2493.1 Steady-state spectroscopy 2493.2 Factors which affect the position of the Qy absorption band of Bchla 2494. Regulation of biosynthesis and assembly 2574.1 Regulation 2574.1.1 Oxygen 2574.1.2 Light 2584.1.2.1 AppA: blue-light-mediated regulation 2594.1.2.2 Bacteriophytochromes 2594.1.3 From the RC to the mature PSU 2614.2 Assembly 2614.2.1 LH1 2624.2.2 LH2 2635. Frenkel excitons 2655.1 General 2655.2 B800 2675.3 B850 2675.4 B850 delocalization 2736. Energy-transfer pathways: experimental results 2746.1 Theoretical background 2746.2 ‘Follow the excitation energy’ 2766.2.1 Bchla→Bchla energy transfer 2776.2.1.1 B800→B800 2776.2.1.2 B800→B850 2786.2.1.3 B850→B850 2796.2.1.4 B850→B875 2806.2.1.5 B875→RC 2806.2.2 Car[harr ]Bchla energy transfer 2817. Single-molecule spectroscopy 2847.1 Introduction to single-molecule spectroscopy 2847.2 Single-molecule spectroscopy on LH2 2857.2.1 Overview 2857.2.2 B800 2867.2.2.1 General 2867.2.2.2 Intra- and intercomplex disorder of site energies 2877.2.2.3 Electron-phonon coupling 2897.2.2.4 B800→B800 energy transfer revisited 2907.2.3 B850 2938. Quantum mechanics and the purple bacteria LH system 2989. Appendix 2999.1 A crash course on quantum mechanics 2999.2 Interacting dimers 30510. Acknowledgements 30611. References 307This review describes the structures of the two major integral membrane pigment complexes, the RC–LH1 ‘core’ and LH2 complexes, which together make up the light-harvesting system present in typical purple photosynthetic bacteria. The antenna complexes serve to absorb incident solar radiation and to transfer it to the reaction centres, where it is used to ‘power’ the photosynthetic redox reaction and ultimately leads to the synthesis of ATP. Our current understanding of the biosynthesis and assembly of the LH and RC complexes is described, with special emphasis on the roles of the newly described bacteriophytochromes. Using both the structural information and that obtained from a wide variety of biophysical techniques, the details of each of the different energy-transfer reactions that occur, between the absorption of a photon and the charge separation in the RC, are described. Special emphasis is given to show how the use of single-molecule spectroscopy has provided a more detailed understanding of the molecular mechanisms involved in the energy-transfer processes. We have tried, with the help of an Appendix, to make the details of the quantum mechanics that are required to appreciate these molecular mechanisms, accessible to mathematically illiterate biologists. The elegance of the purple bacterial light-harvesting system lies in the way in which it has cleverly exploited quantum mechanics.

Publisher

Cambridge University Press (CUP)

Subject

Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3