Abstract
TGF-β family signaling pathways, including TGF-β and BMP pathways, are widely involved in the regulation of health and diseases through downstream SMADs, which are also regulated by multiple validated mechanisms, such as genetic regulation, epigenetic regulation, and feedback regulation. However, it is still unclear whether R-SMADs or Co-SMAD can feedback regulate the TGF-β family signaling pathways in granulosa cells (GCs). In this study, we report a novel mechanism underlying the feedback regulation of TGF-β family signaling pathways, i.e., SMAD4, the only Co-SMAD, positive feedback activates the TGF-β family signaling pathways in GCs with a basal level of TGF-β ligands by interacting with the core promoters of its upstream receptors. Mechanistically, SMAD4 acts as a transcription factor, and feedback activates the transcription of its upstream receptors, including ACVR1B, BMPR2, and TGFBR2, of the canonical TGF-β signaling pathways by interacting with three coactivators (c-JUN, CREB1, and SP1), respectively. Notably, three different interaction modes between SMAD4 and coactivators were identified in SMAD4-mediated feedback regulation of upstream receptors through reciprocal ChIP assays. Our findings in the present study indicate for the first time that SMAD4 feedback activates the canonical TGF-β family signaling pathways in GCs, which improves and expands the regulatory mechanism, especially the feedback regulation modes of TGF-β family signaling pathways in ovarian GCs.
Funder
National Natural Science Foundation of China
Qinglan Project of Jiangsu Province of China
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献