Abstract
During visceral interventions, the transient clampage of supraceliac aorta causes ischemia/reperfusion (I/R) in kidneys, sometime resulting in acute renal failure; preclinical studies identified redox imbalance as the main driver of I/R injury. However, in humans, the metabolic/inflammatory responses seem to prevail on oxidative stress. We investigated myostatin (Mstn) and proprotein convertase subtilisin/kexin type 9 (PCSK9), proatherogenic mediators, during renal I/R. Compared to sham-operated animals, the kidneys of rats who had experienced ischemia (30 min) had higher Mstn and PCSK9 expression after 4 h of reperfusion. After 24 h, they displayed tubular necrosis, increased nitrotyrosine positivity, and nuclear peroxisome proliferator-activated receptor gamma coactivator-1alpha relocation, markers of oxidative stress and mitochondria imbalance. Mstn immunopositivity was increased in tubuli, while PCSK9 immunosignal was depleted; systemically, PCSK9 was higher in plasma from I/R rats. In HK-2 cells, both ischemia and reperfusion enhanced reactive oxygen species production and mitochondrial dysfunction. H2O2 upregulated Mstn and PCSK9 mRNA after 1 and 3.5 h, respectively. Accordingly, ischemia early induced Mstn and PCSK9 mRNA; during reperfusion Mstn was augmented and PCSK9 decreased. Mstn treatment early increased PCSK9 expression (within 8 h), to diminish over time; finally, Mstn silencing restrained ischemia-induced PCSK9. Our study demonstrates that renal I/R enhances Mstn and PCSK9 expression and that Mstn induces PCSK9, suggesting them as therapeutic targets for vascular protection during visceral surgery.
Funder
Università degli Studi di Genova
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献