Structural Dynamics of C2F4I2 in Cyclohexane Studied via Time-Resolved X-ray Liquidography

Author:

Gu Jain,Lee Seonggon,Eom Seunghwan,Ki HosungORCID,Choi Eun Hyuk,Lee Yunbeom,Nozawa Shunsuke,Adachi Shin-ichi,Kim JeonghoORCID,Ihee HyotcherlORCID

Abstract

The halogen elimination of 1,2-diiodoethane (C2H4I2) and 1,2-diiodotetrafluoroethane (C2F4I2) serves as a model reaction for investigating the influence of fluorination on reaction dynamics and solute–solvent interactions in solution-phase reactions. While the kinetics and reaction pathways of the halogen elimination reaction of C2H4I2 were reported to vary substantially depending on the solvent, the solvent effects on the photodissociation of C2F4I2 remain to be explored, as its reaction dynamics have only been studied in methanol. Here, to investigate the solvent dependence, we conducted a time-resolved X-ray liquidography (TRXL) experiment on C2F4I2 in cyclohexane. The data revealed that (ⅰ) the solvent dependence of the photoreaction of C2F4I2 is not as strong as that observed for C2H4I2, and (ⅱ) the nongeminate recombination leading to the formation of I2 is slower in cyclohexane than in methanol. We also show that the molecular structures of the relevant species determined from the structural analysis of TRXL data provide an excellent benchmark for DFT calculations, especially for investigating the relevance of exchange-correlation functionals used for the structural optimization of haloalkanes. This study demonstrates that TRXL is a powerful technique to study solvent dependence in the solution phase.

Funder

Institute for Basic Science

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3