A Fast Surrogate Model-Based Algorithm Using Multilayer Perceptron Neural Networks for Microwave Circuit Design

Author:

Jamshidi Mohammad (Behdad)1ORCID,Yahya Salah I.23ORCID,Roshani Saeed4ORCID,Chaudhary Muhammad Akmal5ORCID,Ghadi Yazeed Yasin6ORCID,Roshani Sobhan4ORCID

Affiliation:

1. The International Association of Engineers (IAENG), Hong Kong 999077, China

2. Department of Communication and Computer Engineering, Cihan University-Erbil, Erbil 44001, Iraq

3. Department of Software Engineering, Faculty of Engineering, Koya University, Koya 46017, Iraq

4. Department of Electrical Engineering, Kermanshah Branch, Islamic Azad University, Kermanshah 67771, Iran

5. Department of Electrical and Computer Engineering, College of Engineering and Information Technology, Ajman University, Ajman P.O. Box 346, United Arab Emirates

6. Software Engineering and Computer Science Department, Al Ain University, Al Ain P.O. Box 15551, United Arab Emirates

Abstract

This paper introduces a novel algorithm for designing a low-pass filter (LPF) and a microstrip Wilkinson power divider (WPD) using a neural network surrogate model. The proposed algorithm is applicable to various microwave devices, enhancing their performance and frequency response. Desirable output parameters can be achieved for the designed LPF and WPD by using the proposed algorithm. The proposed artificial neural network (ANN) surrogate model is employed to calculate the dimensions of the LPF and WPD, resulting in their efficient design. The LPF and WPD designs incorporate open stubs, stepped impedances, triangular-shaped resonators, and meandered lines to achieve optimal performance. The compact LPF occupies a size of only 0.15 λg × 0.081 λg, and exhibits a sharp response within the transmission band, with a sharpness parameter of approximately 185 dB/GHz. The designed WPD, operating at 1.5 GHz, exhibits outstanding harmonics suppression from 2 GHz to 20 GHz, with attenuation levels exceeding 20 dB. The WPD successfully suppresses 12 unwanted harmonics (2nd to 13th). The obtained results demonstrate that the proposed design algorithm effectively accomplishes the LPF and WPD designs, exhibiting desirable parameters such as operating frequency and high-frequency harmonics suppression. The WPD demonstrates a low insertion loss of 0.1 dB (S21 = 0.1 dB), input and output return losses exceeding 30 dB (S11 = −35 dB, S22 = −30 dB), and an output ports isolation of more than 32 dB (S23 = −32 dB), making it suitable for integration into modern communication systems.

Publisher

MDPI AG

Subject

Computational Mathematics,Computational Theory and Mathematics,Numerical Analysis,Theoretical Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3