Application of Neural Network and Time-Domain Feature Extraction Techniques for Determining Volumetric Percentages and the Type of Two Phase Flow Regimes Independent of Scale Layer Thickness

Author:

Alanazi Abdullah K.ORCID,Alizadeh Seyed Mehdi,Nurgalieva Karina ShamilyevnaORCID,Nesic Slavko,Grimaldo Guerrero John WilliamORCID,Abo-Dief Hala M.,Eftekhari-Zadeh EhsanORCID,Nazemi EhsanORCID,Narozhnyy Igor M.

Abstract

One of the factors that significantly affects the efficiency of oil and gas industry equipment is the scales formed in the pipelines. In this innovative, non-invasive system, the inclusion of a dual-energy gamma source and two sodium iodide detectors was investigated with the help of artificial intelligence to determine the flow pattern and volume percentage in a two-phase flow by considering the thickness of the scale in the tested pipeline. In the proposed structure, a dual-energy gamma source consisting of barium-133 and cesium-137 isotopes emit photons, one detector recorded transmitted photons and a second detector recorded the scattered photons. After simulating the mentioned structure using Monte Carlo N-Particle (MCNP) code, time characteristics named 4th order moment, kurtosis and skewness were extracted from the recorded data of both the transmission detector (TD) and scattering detector (SD). These characteristics were considered as inputs of the multilayer perceptron (MLP) neural network. Two neural networks that were able to determine volume percentages with high accuracy, as well as classify all flow regimes correctly, were trained.

Funder

German Research Foundation and the Open Access Publication Fund of the Thueringer Universitaets- und Landesbibliothek Jena

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3