Predicting Benzene Concentration Using Machine Learning and Time Series Algorithms

Author:

Menéndez García Luis AlfonsoORCID,Sánchez Lasheras FernandoORCID,García Nieto Paulino José,Álvarez de Prado LauraORCID,Bernardo Sánchez AntonioORCID

Abstract

Benzene is a pollutant which is very harmful to our health, so models are necessary to predict its concentration and relationship with other air pollutants. The data collected by eight stations in Madrid (Spain) over nine years were analyzed using the following regression-based machine learning models: multivariate linear regression (MLR), multivariate adaptive regression splines (MARS), multilayer perceptron neural network (MLP), support vector machines (SVM), autoregressive integrated moving-average (ARIMA) and vector autoregressive moving-average (VARMA) models. Benzene concentration predictions were made from the concentration of four environmental pollutants: nitrogen dioxide (NO2), nitrogen oxides (NOx), particulate matter (PM10) and toluene (C7H8), and the performance measures of the model were studied from the proposed models. In general, regression-based machine learning models are more effective at predicting than time series models.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference81 articles.

1. Characterization of BTEX group of VOCs and inhalation risks in indoor microenvironments at small enterprises

2. Exposure Science: Contaminant Mixtures

3. Benzene;Harrison,2010

4. Hydrocarbons, Aromatic. Encylopaedia of Occupational Health and Safetyhttps://www.iloencyclopaedia.org/part-xviii-10978/guide-to-chemicals/item/1052-hydrocarbons-aromatic

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3