Deep Learning-Based Transformer Moisture Diagnostics Using Long Short-Term Memory Networks

Author:

Vatsa Aniket1,Hati Ananda Shankar1ORCID,Bolshev Vadim2ORCID,Vinogradov Alexander2,Panchenko Vladimir3ORCID,Chakrabarti Prasun4

Affiliation:

1. Department of Electrical Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad 826004, India

2. Laboratory of Power Supply and Heat Supply, Federal Scientific Agroengineering Centre VIM, 109428 Moscow, Russia

3. Department of Theoretical and Applied Mechanics, Russian University of Transport, 127994 Moscow, Russia

4. Department of Computer Science and Engineering, ITM SLS Baroda University, Vadodara 391510, India

Abstract

Power transformers play a crucial role in maintaining the stability and reliability of energy systems. Accurate moisture assessment of transformer oil-paper insulation is critical for ensuring safe operating conditions and power transformers’ longevity in large interconnected electrical grids. The moisture can be predicted and quantified by extracting moisture-sensitive dielectric feature parameters. This article suggests a deep learning technique for transformer moisture diagnostics based on long short-term memory (LSTM) networks. The proposed method was tested using a dataset of transformer oil moisture readings, and the analysis revealed that the LSTM network performed well in diagnosing oil insulation moisture. The method’s performance was assessed using various metrics, such as R-squared, mean absolute error, mean squared error, root mean squared error, and mean signed difference. The performance of the proposed model was also compared with linear regression and random forest (RF) models to evaluate its effectiveness. It was determined that the proposed method outperformed traditional methods in terms of accuracy and efficiency. This investigation demonstrates the potential of a deep learning approach for identifying transformer oil insulation moisture with a R2 value of 0.899, thus providing a valuable tool for power system operators to monitor and manage the integrity of their transformer fleet.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3