Future Predictions of Rainfall and Temperature Using GCM and ANN for Arid Regions: A Case Study for the Qassim Region, Saudi Arabia

Author:

Alotaibi Khalid,Ghumman Abdul,Haider Husnain,Ghazaw Yousry,Shafiquzzaman Md.

Abstract

Future predictions of rainfall patterns in water-scarce regions are highly important for effective water resource management. Global circulation models (GCMs) are commonly used to make such predictions, but these models are highly complex and expensive. Furthermore, their results are associated with uncertainties and variations for different GCMs for various greenhouse gas emission scenarios. Data-driven models including artificial neural networks (ANNs) and adaptive neuro fuzzy inference systems (ANFISs) can be used to predict long-term future changes in rainfall and temperature, which is a challenging task and has limitations including the impact of greenhouse gas emission scenarios. Therefore, in this research, results from various GCMs and data-driven models were investigated to study the changes in temperature and rainfall of the Qassim region in Saudi Arabia. Thirty years of monthly climatic data were used for trend analysis using Mann–Kendall test and simulating the changes in temperature and rainfall using three GCMs (namely, HADCM3, INCM3, and MPEH5) for the A1B, A2, and B1 emissions scenarios as well as two data-driven models (ANN: feed-forward-multilayer, perceptron and ANFIS) without the impact of any emissions scenario. The results of the GCM were downscaled for the Qassim region using the Long Ashton Research Station’s Weather Generator 5.5. The coefficient of determination (R2) and Akaike’s information criterion (AIC) were used to compare the performance of the models. Results showed that the ANNs could outperform the ANFIS for predicting long-term future temperature and rainfall with acceptable accuracy. All nine GCM predictions (three models with three emissions scenarios) differed significantly from one another. Overall, the future predictions showed that the temperatures of the Qassim region will increase with a specified pattern from 2011 to 2099, whereas the changes in rainfall will differ over various spans of the future.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference64 articles.

1. Intercomparison of regional-scale hydrological models and climate change impacts projected for 12 large river basins worldwide—a synthesis

2. Trends of Climate Change in Saudi Arabia: Implications on Water Resources

3. Long-term Climate Change: Projections, Commitments and Irreversibility;Collins,2013

4. 2013: Summary for Policymakers. The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change,2013

5. Climate and Hydrological Change Characteristics and Applicability of GLDAS Data in the Yarlung Zangbo River Basin, China

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3