Affiliation:
1. Fisheries College, Hunan Agricultural University, Changsha 410128, China
2. Hunan Engineering Research Center for Utilization of Characteristics of Aquatic Resources, Hunan Agricultural University, Changsha 410128, China
Abstract
An eight-week trial was conducted to investigate the effects of sanguinarine supplementation (600 μg and 1200 μg/kg) in high-fat (crude fat: 10%) diets (HF) on the intestinal physiological function of Ctenopharyngodon idellus (initial weight 50.21 ± 0.68 g), based on a basic diet (5% crude fat, CON), which were named HFLS and HFHS, respectively. The results showed that the HF diet significantly impaired the intestinal immune and physical barrier function, and disrupted the balance of the intestinal microbiota in grass carp. Compared to the HF diet, sanguinarine supplementation significantly improved the levels of serum C4, C3, AKP, IgA, and IgM, and enhanced the intestinal antioxidant capacity (gr, CuZnsod, gpx4, cat, gsto, and nrf2 expression were significantly up-regulated). Sanguinarine significantly down-regulated the expression of claudin-15 and up-regulated the expression of claudin-b, claudin-c, occludin, and zo-1 by inhibiting MLCK signaling molecules. Additionally, sanguinarine significantly down-regulated the expression of il-6, il-1β, and tnf-α and up-regulated the expression of il-10, tgf-β2, and tgf-β1 by inhibiting NF-κB signaling molecules, thereby alleviating intestinal inflammation caused by HF diets. Furthermore, compared to the HF diet, the abundance of Fusobacterium and Cetobacterium in the HFHS diet increased significantly, while the abundance of Firmicutes and Streptococcus showed the opposite trend. In conclusion, the HF diet had a negative impact on grass carp, while sanguinarine supplementation enhanced intestinal antioxidant ability, alleviated intestinal barrier damage, and ameliorated the homeostasis of the intestinal microbiota.
Funder
National Natural Science Foundation of China
Postgraduate Research and Innovation Project of Hunan Province
Subject
Cell Biology,Clinical Biochemistry,Molecular Biology,Biochemistry,Physiology
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献