High-Purity Bioactive Ingredient—3S,3′S-Astaxanthin: A New Preparation from Genetically Modified Kluyveromyces marxianus without Column Chromatography and Gel Filtration

Author:

Yuan Wei-Cheng1,Wu Tung-Ying23,Chu Pei-Yi4,Chang Fang-Rong1567ORCID,Wu Yang-Chang489

Affiliation:

1. Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 807, Taiwan

2. Department of Biological Science & Technology, Meiho University, Pingtung 912, Taiwan

3. Department of Food Science and Nutrition, Meiho University, Pingtung 912, Taiwan

4. Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung 404, Taiwan

5. Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 804, Taiwan

6. Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan

7. Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan

8. Graduate Institute of Integrated Medicine, China Medical University, Taichung 404, Taiwan

9. Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung 413, Taiwan

Abstract

A highly efficient methodology for bioactive ingredient 3S,3′S-astaxanthin (3S,3′S-AST) preparation from genetically modified yeast (Kluyveromyces marxianus) with a combination of enzyme-assisted extraction and salt-assisted liquid-liquid extraction (SALLE) was achieved. The highest yield of 3S,3′S-AST indicated that FoodPro® CBL for yeast cell walls hydrolysis could significantly enhance extraction and obtain, with the help of SALLE procedure, quantified 3S,3′S-AST over 99% in purity through cation chelation. In the oxygen radical antioxidant capacity (ORAC) assay, the antioxidant capacity of high-purity 3S,3′S-AST products were 18.3 times higher than that of the original raw material extract. This new combination preparation may replace previous methods and has the potential to be scaled up in the manufacture of high-purity 3S,3′S-AST from low-value bioresources of raw materials to high-value products in the food and/or drug industries with lower cost and simple equipment.

Publisher

MDPI AG

Subject

Cell Biology,Clinical Biochemistry,Molecular Biology,Biochemistry,Physiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Tumor-targeted astaxanthin nanoparticles for therapeutic application in vitro;Colloid and Interface Science Communications;2023-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3