Effect of Oil Type on Spatial Partition of Resveratrol in the Aqueous Phase, the Protein Interface and the Oil Phase of O/W Emulsions Stabilized by Whey Protein and Caseinate

Author:

Chen Yang12,Cheng Hao12ORCID,Liang Li123ORCID

Affiliation:

1. State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China

2. School of Food Science and Technology, Jiangnan University, Wuxi 214122, China

3. International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China

Abstract

Oil-in-water emulsions contain the inner oil phase, the protein membrane at the interface and the aqueous phase. In this study, the spatial partition of resveratrol was investigated in sunflower oil, fish oil, medium-chain triglyceride (MCT) and peppermint oil emulsions stabilized by native whey protein isolate (WPI), heat-denatured WPI and sodium caseinate. Resveratrol was added in the aqueous phase of emulsions and its partition was analyzed in term of resveratrol solubility in bulk oil and in the aqueous phase of protein, protein concentration and interfacial protein. The final concentrations of resveratrol in the aqueous phase were basically greater than those in the oil phase of fish oil, sunflower oil and MCT oil emulsions, while the final concentrations of resveratrol in the oil phase were greater than those in the aqueous phase of peppermint oil emulsions. The difference in the interfacial partition of resveratrol and proteins increased as the polyphenol solubility in bulk oil increased. Resveratrol solubility in the oil phase drove its transfer from the aqueous phase into the oil phase in all emulsions, except that the interfacial protein also contributed to the transfer in fish oil emulsions. The oil–water interface provided the microenvironment for the enrichment of resveratrol by proteins.

Publisher

MDPI AG

Subject

Cell Biology,Clinical Biochemistry,Molecular Biology,Biochemistry,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3