A Review on the Impact of Oxidative Stress and Medicinal Plants on Leydig Cells

Author:

Monageng Elizabeth1ORCID,Offor Ugochukwu2ORCID,Takalani Ndivhuho Beauty1ORCID,Mohlala Kutullo1,Opuwari Chinyerum Sylvia1ORCID

Affiliation:

1. Department of Medical Biosciences, Faculty of Natural Science, University of Western Cape, Cape Town 7535, South Africa

2. School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa

Abstract

Leydig cells are essential for steroidogenesis and spermatogenesis. An imbalance in the production of reactive oxygen species (ROS) and the cellular antioxidant level brings about oxidative stress. Oxidative stress (OS) results in the dysfunction of Leydig cells, thereby impairing steroidogenesis, spermatogenesis, and ultimately, male infertility. To prevent Leydig cells from oxidative insults, there needs to be a balance between the ROS production and the cellular protective capacity of antioxidants. Evidence indicates that medicinal plants could improve Leydig cell function at specific concentrations under basal or OS conditions. The increased usage of medicinal plants has been considered a possible alternative treatment for male infertility. This review aims to provide an overview of the impact of oxidative stress on Leydig cells as well as the effects of various medicinal plant extracts on TM3 Leydig cells. The medicinal plants of interest include Aspalathus linearis, Camellia sinensis, Moringa oleifera, Morinda officinale, Taraxacum officinale, Trichilia emetica, Terminalia sambesiaca, Peltophorum africanum, Ximenia caffra, Serenoa repens, Zingiber officinale, Eugenia jambolana, and a combination of dandelion and fermented rooibos (CRS-10). According to the findings obtained from studies conducted on the evaluated medicinal plants, it can, therefore, be concluded that the medicinal plants maintain the antioxidant profile of Leydig cells under basal conditions and have protective or restorative effects following exposure to oxidative stress. The available data suggest that the protective role exhibited by the evaluated plants may be attributed to their antioxidant content. Additionally, the use of the optimal dosage or concentration of the extracts in the management of oxidative stress is of the utmost importance, and the measurement of their oxidation reduction potential is recommended.

Publisher

MDPI AG

Subject

Cell Biology,Clinical Biochemistry,Molecular Biology,Biochemistry,Physiology

Reference229 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3