Investigating the Interplay between Tomato Leaf Curl New Delhi Virus Infection, Starch Metabolism and Antioxidant Defence System in Potato (Solanum tuberosum L.)

Author:

Kumar Ravinder1ORCID,Lal Milan Kumar1ORCID,Tiwari Rahul Kumar1ORCID,Chourasia Kumar Nishant2ORCID,Kumar Awadhesh3ORCID,Kumar Rakesh1,Sharma Shivangi1,Singh Brajesh1

Affiliation:

1. ICAR-Central Potato Research Institute, Shimla 171001, Himachal Pradesh, India

2. ICAR-Central Research Institute for Jute and Allied Fibres, Barrackpore 700121, West Bengal, India

3. ICAR-National Rice Research Institute, Cuttack 753006, Odisha, India

Abstract

The potato apical leaf curl disease is caused by tomato leaf curl New Delhi virus-potato (ToLCNDV-potato), which severely alters a plant’s starch metabolism, starch hydrolysing enzymes, and antioxidant mechanism. In this study, the result suggested that ToLCNDV-potato significantly (p < 0.01) affected the morphological parameters and photosynthetic pigment system in both the cultivars of potato, viz., Kufri Pukhraj (susceptible) and Kufri Bahar (tolerant). However, the impact of ToLCNDV-potato was lower in Kufri Bahar. Moreover, the viral infection in potato showed significant (p < 0.01) enhancement in the leakage of plant oxidative metabolites such as proline and malondialdehyde (MDA) which was further confirmed with higher electrolyte leakage. The viral infection imbalance of starch metabolism in the leaves ultimately affects the carbohydrate profile. ToLCNDV-potato significantly lowered starch synthesis, enhanced the accumulation of sucrose, glucose, fructose and—which was further validated by enzymatic estimation of β-amylase—α-amylase and phosphorylase activity in the leaves of both cultivars. The antioxidant enzymes, viz., catalase, ascorbate peroxidase, and superoxide dismutase, were reported to be enhanced in both the cultivars due to ToLCNDV-potato infection. The higher enhancement of antioxidant enzyme activity was observed in Kufri Bahar, which signifies its resistant attributes. These findings in the potato plant broaden our understanding of the regulatory mechanisms of starch metabolism and antioxidant activity and provide proof of concept for breeding potato for ToLCNDV-potato tolerance.

Publisher

MDPI AG

Subject

Cell Biology,Clinical Biochemistry,Molecular Biology,Biochemistry,Physiology

Reference42 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Illustrating Recent Development in Melatonin-Heavy Metal Research in Plant;Melatonin in Plants: A Pleiotropic Molecule for Abiotic Stresses and Pathogen Infection;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3