Enhancing Anthocyanin Extraction from Wine Lees: A Comprehensive Ultrasound-Assisted Optimization Study

Author:

Umsza-Guez Marcelo A.1ORCID,Vázquez-Espinosa Mercedes2ORCID,Chinchilla Nuria3ORCID,Aliaño-González María José24ORCID,Oliveira de Souza Carolina1ORCID,Ayena Kodjovi1,Fernández Barbero Gerardo2ORCID,Palma Miguel2ORCID,Carrera Ceferino2ORCID

Affiliation:

1. Food Science Postgraduate Program, Faculty of Pharmacy, Federal University of Bahia, Salvador 40170-100, Bahia, Brazil

2. Department of Analytical Chemistry, Faculty of Sciences, University of Cadiz, Agrifood Campus of International Excellence (ceiA3), Wine and Agrifood Research Institute (IVAGRO), 11510 Puerto Real, Spain

3. Department of Organic Chemistry, Faculty of Sciences, University of Cadiz, Institute of Biomolecules (INBIO), 11510 Puerto Real, Spain

4. MED–Mediterranean Institute for Agriculture, Environment and Development, Faculdade de Ciências e Tecnologia, Campus de Gambelas, Ed. 8, Universidade do Algarve, 8005-139 Faro, Portugal

Abstract

Wine lees, an important by-product of the wine industry, pose a major environmental problem due to the enormous quantities of solid–liquid waste that are discarded annually without defined applications. In this study, the optimization of a method based on a Box–Behnken design with surface response has been carried out to obtain extracts with high anthocyanin content and potent antioxidant activity. Six variables have been considered: %EtOH, temperature, amplitude, cycle, pH, and ratio. The developed method exhibited important repeatability properties and intermediate precision, with less than 5% CV being achieved. Furthermore, these novel methods were successfully applied to diverse wine lees samples sourced from Cabernet Sauvignon and Syrah varieties (Vitis vinifera), resulting in extracts enriched with significant anthocyanin content and noteworthy antioxidant activity. Additionally, this study evaluated the influence of grape variety, fermentation type (alcoholic or malolactic), and sample treatment on anthocyanin content and antioxidant activity, providing valuable insights for further research and application in various sectors. The potential applications of these high-quality extracts extend beyond the winemaking industry, holding promise for fields like medicine, pharmaceuticals, and nutraceuticals, thus promoting a circular economy and mitigating environmental contamination.

Funder

State Sub-program of Research Infrastructures and Technical Scientific Equipment

Coordenação de Aperfieçoamento Pessoal de Nível Superior—Brasil

Publisher

MDPI AG

Subject

Cell Biology,Clinical Biochemistry,Molecular Biology,Biochemistry,Physiology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3