Effective Improvement of the Oxidative Stability of Acer truncatum Bunge Seed Oil, a New Woody Oil Food Resource, by Rosemary Extract

Author:

Qi Yue123,Huang Yeqin123,Dong Yanmei12,Zhang Wenying123,Xia Fei12,Bai Hongtong12,Stevanovic Zora Dajic4,Li Hui12,Shi Lei12

Affiliation:

1. Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China

2. China National Botanical Garden, Beijing 100093, China

3. University of Chinese Academy of Sciences, Beijing 100049, China

4. Department of Agrobotany, University of Belgrade Faculty of Agriculture, Nemanjina 6, 11080 Zemun, Serbia

Abstract

Acer truncatum Bunge is a versatile, oil-producing, woody tree natively and widely distributed in northern China. In 2011, The People’s Republic of China’s Ministry of Health certified Acer truncatum seed oil (Aoil) as a new food resource. Unsaturated fatty acids account for up to 92% of the entire Aoil. When Aoil is processed or stored, it can easily oxidize. In this study, the effects of rosemary (Rosmarinus officinalis L.) extract on the oxidation stability of Aoil were analysed from multiple angles. The results of radical scavenging ability, malondialdehyde, and free fatty acid reveal that rosemary crude extract (RCE), rosmarinic acid (RA), and carnosic acid (CA) can significantly inhibit the oxidation of Aoil, and CA has the best oxidative stability for Aoil among the tested components of the crude rosemary. The delayed oxidation ability of CA for Aoil was slightly weaker than that of tert-butylhydroquinone (TBHQ), but stronger than that of butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT), and α-tocopherol (α-T), which was confirmed by microstructures, kinematic viscosity, Aoil weight change, and functional group. Additionally, CA-enriched Aoil had the smallest content of volatile lipid oxidation products. Moreover, lecithin-CA particles were added to enhance the oxidative stability of Aoil. These findings show that CA is a potent antioxidant, capable of successfully preventing Aoil oxidation.

Funder

International Partnership Program of the Chinese Academy of Science

Strategic Priority Research Program of the Chinese Academy of Sciences

Publisher

MDPI AG

Subject

Cell Biology,Clinical Biochemistry,Molecular Biology,Biochemistry,Physiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3