The Key Role of Mitochondrial Function in Health and Disease

Author:

San-Millán Iñigo123ORCID

Affiliation:

1. Department of Human Physiology and Nutrition, University of Colorado, Colorado Springs, CO 80198, USA

2. Department of Medicine, Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA

3. Department of Medicine, Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA

Abstract

The role of mitochondrial function in health and disease has become increasingly recognized, particularly in the last two decades. Mitochondrial dysfunction as well as disruptions of cellular bioenergetics have been shown to be ubiquitous in some of the most prevalent diseases in our society, such as type 2 diabetes, cardiovascular disease, metabolic syndrome, cancer, and Alzheimer’s disease. However, the etiology and pathogenesis of mitochondrial dysfunction in multiple diseases have yet to be elucidated, making it one of the most significant medical challenges in our history. However, the rapid advances in our knowledge of cellular metabolism coupled with the novel understanding at the molecular and genetic levels show tremendous promise to one day elucidate the mysteries of this ancient organelle in order to treat it therapeutically when needed. Mitochondrial DNA mutations, infections, aging, and a lack of physical activity have been identified to be major players in mitochondrial dysfunction in multiple diseases. This review examines the complexities of mitochondrial function, whose ancient incorporation into eukaryotic cells for energy purposes was key for the survival and creation of new species. Among these complexities, the tightly intertwined bioenergetics derived from the combustion of alimentary substrates and oxygen are necessary for cellular homeostasis, including the production of reactive oxygen species. This review discusses different etiological mechanisms by which mitochondria could become dysregulated, determining the fate of multiple tissues and organs and being a protagonist in the pathogenesis of many non–communicable diseases. Finally, physical activity is a canonical evolutionary characteristic of humans that remains embedded in our genes. The normalization of a lack of physical activity in our modern society has led to the perception that exercise is an “intervention”. However, physical activity remains the modus vivendi engrained in our genes and being sedentary has been the real intervention and collateral effect of modern societies. It is well known that a lack of physical activity leads to mitochondrial dysfunction and, hence, it probably becomes a major etiological factor of many non–communicable diseases affecting modern societies. Since physical activity remains the only stimulus we know that can improve and maintain mitochondrial function, a significant emphasis on exercise promotion should be imperative in order to prevent multiple diseases. Finally, in populations with chronic diseases where mitochondrial dysfunction is involved, an individualized exercise prescription should be crucial for the “metabolic rehabilitation” of many patients. From lessons learned from elite athletes (the perfect human machines), it is possible to translate and apply multiple concepts to the betterment of populations with chronic diseases.

Funder

IS–M Cellular Metabolism Laboratory funds

Publisher

MDPI AG

Subject

Cell Biology,Clinical Biochemistry,Molecular Biology,Biochemistry,Physiology

Reference327 articles.

1. Bioenergetic origins of complexity and disease;Wallace;Cold Spring Harb. Symp. Quant. Biol.,2011

2. Mitochondria and cell bioenergetics: Increasingly recognized components and a possible etiologic cause of Alzheimer’s disease;Swerdlow;Antioxid. Redox Signal.,2012

3. Intrinsic OXPHOS limitations underlie cellular bioenergetics in leukemia;Nelson;eLife,2021

4. Alterations of cellular bioenergetics in pulmonary artery endothelial cells;Xu;Proc. Natl. Acad. Sci. USA,2007

5. The bioenergetic signature of cancer: A marker of tumor progression;Cuezva;Cancer Res.,2002

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3