Characterization of Dextran Biosynthesized by Glucansucrase from Leuconostoc pseudomesenteroides and Their Potential Biotechnological Applications

Author:

Du Renpeng12,Yu Liansheng1,Sun Meng1,Ye Guangbin3,Yang Yi1,Zhou Bosen1,Qian Zhigang2,Ling Hongzhi1,Ge Jingping1

Affiliation:

1. Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China

2. State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China

3. School of Basic Medical Sciences, Youjiang Medical University for Nationalities, Baise 533000, China

Abstract

Glucansucrase was purified from Leuconostoc pseudomesenteroides. The glucansucrase exhibited maximum activity at pH 5.5 and 30 °C. Ca2+ significantly promoted enzyme activity. An exopolysaccharide (EPS) was synthesized by this glucansucrase in vitro and purified. The molecular weight of the EPS was 3.083 × 106 Da. Fourier transform infrared (FT-IR) and nuclear magnetic resonance (NMR) spectroscopy showed that the main structure of glucan was 97.3% α-(1→6)-linked D-glucopyranose units, and α-(1→3) branched chain accounted for 2.7%. Scanning electron microscopy (SEM) observation of dextran showed that its surface was smooth and flaky. Atomic force microscopy (AFM) of dextran revealed a chain-like microstructure with many irregular protuberances in aqueous solution. The results showed that dextran had good thermal stability, water holding capacity, water solubility and emulsifying ability (EA), as well as good antioxidant activity; thus it has broad prospects for development in the fields of food, biomedicine, and medicine.

Publisher

MDPI AG

Subject

Cell Biology,Clinical Biochemistry,Molecular Biology,Biochemistry,Physiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3