The Usage of UCG Technology as Alternative to Reach Low-Carbon Energy

Author:

Zelenak Stefan,Skvarekova ErikaORCID,Senova AndreaORCID,Wittenberger GabrielORCID

Abstract

Countries of the European Union have stated transition to carbon-neutral economy until the year of 2050. Countries with a higher share of coal-fired power generation currently have no solution to end their combustion and use clean, emission-free energy immediately. The solution to this problem in the energy industry appears to be the increased use of natural gas, which significantly reduces CO2 emissions. In this article, we investigated the possibility of using coal in situ, using UCG (underground coal gasification) technology. We focused on verified geological, hydrogeological, and tectonic information about the selected brown coal deposit in Slovakia. This information has been assessed in research projects in recent years at the Technical University. From the abovementioned information, possible adverse factors were evaluated. These factors affect the rock environment around the underground generator by UCG activity. As part of the process management, measures were proposed to eliminate the occurrence of pollution and adverse effects on the environment. In the final phase of the UCG technology, we proposed to carry out, in the boreholes and in the generator cavity, water flushing and subsequent grouting. The proposed are suitable materials for solidification and stabilization. Results of this article´s solutions are crucial in the case of usage of this so-called clean technology, not only in Slovakia but also worldwide.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference42 articles.

1. Impact analysis of the oxidant in the process of underground coal gasification

2. An experimental ex-situ study of the suitability of a high moisture ortho-lignite for underground coal gasification (UCG) process

3. https://www.hbp.sk/index.php/sk/spolocnost/tlacovy-servis/spravy2019

4. Návrh Energetickej Politikyhttp://www.rokovania.sk/Rokovanie.aspx/BodRokovaniaDetail?idMaterial=23993

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3