Abstract
Underground coal gasification (UCG) may change the energy consumption structure from coal-dominated to gas-dominated in the years to come. Before that, three important problems need to be solved, including failure of gasification due to large amounts of water pouring into the gasifier, environmental pollution caused by gas migration to the surface, and low calorific value caused by poor control of the degree of gasification. In this study, a geological model is first established using the computer modeling group (CMG), a commercial software package for reservoir simulation. Then, the inflow of coal seam water into the gasifier during the controlled retracting injection point (CRIP) gasification process is simulated based on the geological model, and the maximum instantaneous water inflow is simulated too. Meanwhile, the migration of gasified gas is also simulated, and the migration discipline of different gases is shown. Finally, the pressure distributions in two stages are presented, pointing out the dynamic pressure characteristics during the UCG process. The results show that (a) the cavity width, production pressure, and gasifier pressure are negatively correlated with the maximum instantaneous water inflow, while the initial formation pressure, injection pressure, coal seam floor aquifer energy, and temperature are positively correlated; (b) CO2 is mainly concentrated near the production well and largely does not migrate upward, O2 migrates upward slowly, while CH4, CO and H2 migrate relatively quickly. When the injection–production pressure difference is 2 MPa, it takes 33.5 years, 40 years, and 44.6 years for CH4, CO, and H2 to migrate from a depth of 1000 m to 200 m, respectively. When the pressure difference increases to 4 MPa, the gas migration rate increases about two-fold. The aquifer (3 MPa) above a coal outcrop can slow down the upward migration rate of gas by 0.03 m/day; (c) the pressure near the production well changes more significantly than the pressure near the injection well. The overall gasifier pressure rises with gasifier width increases, and the pressure distribution always presents an asymmetric unimodal distribution during the receding process of the gas injection point. The simulation work can provide a theoretical basis for the operation parameters design and monitoring of the well deployment, ensuring the safety and reliability of on-site gasification.
Funder
Science and Technology Project from PetroChina
Science Foundation of China University of Petroleum, Beijing
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)