Numerical Analysis of Flood Invasion Path and Mass Flow Rate in Subway Stations under Heavy Rainfall Conditions

Author:

Lu Jia1,Lin Zhiyu1,Lin Hang1ORCID

Affiliation:

1. School of Resources and Safety Engineering, Central South University, Changsha 410083, China

Abstract

The occurrence of extreme weather, such as heavy rainfall and sudden increases in precipitation, has led to a notable rise in the frequency of flooding in subway stations. By conducting numerical simulations of flood disasters in subway stations under heavy rainfall conditions and gaining insights into the patterns of flood invasion inside the stations, it is possible to develop practical and feasible drainage designs for the stations. This paper employs the computational fluid dynamics (CFD) method, utilising the volume of fluid function (VOF) method and the renormalization k-ε group model within the vortex viscosity model. The complete process of flood invasion into subway stations with varying water levels (1500 mm, 2000 mm, and 2450 mm) is modelled, and the distribution of floods at different times under varying operational conditions is analysed to identify the evolutionary patterns of station flood history. The simulation calculations yielded the mass flow rate time history curve at the tunnel entrance and exit, which was then subjected to an analysis of its development trend over time. The total accumulated water in the subway station is calculated by integrating the difference in mass flow rate between the entrance and the tunnel exit, using the mass flow rate curve. In conclusion, the paper proposes drainage measures that provide valuable insights into pumping strategies when floodwaters infiltrate subway stations. The results indicate that the speed of flood spreading in subway stations increases with higher groundwater levels, and that the mass flow rate of floodwater entering the tunnels increases over time, eventually reaching a stable state. It was observed that, at certain times, the mass flow rate of floodwater into the tunnels exhibited a linear relationship with time.

Funder

Guangxi Emergency Management Department 2024 Innovation and Technology Research project

First National Natural Disaster Comprehensive Risk Survey in Hunan Province

Guizhou Provincial Major Scientific and Technological Program

Hunan Provincial Department of natural resources geological exploration project

Key Project of the Hunan Provincial Department of Education

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3