Leveraging LLMs for Efficient Topic Reviews

Author:

Gana Bady1ORCID,Leiva-Araos Andrés2ORCID,Allende-Cid Héctor134ORCID,García José5ORCID

Affiliation:

1. Escuela de Ingeniería Informática, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2241, Valparaíso 2362807, Chile

2. Instituto de Data Science, Facultad de Ingeniería, Universidad del Desarrollo, Av. La Plaza 680, Las Condes, Santiago 7610615, Chile

3. Knowledge Discovery, Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme (IAIS), Schloss Birlinghoven 1, 53757 Sankt Augustin, Germany

4. Lamarr Institute for Machine Learning and Artificial Intelligence, 53115 Dortmund, Germany

5. Escuela de Ingeniería en Construcción y Transporte, Pontificia Universidad Católica de Valparaíso, Av. Brasil 2147, Valparaíso 2340000, Chile

Abstract

This paper presents the topic review (TR), a novel semi-automatic framework designed to enhance the efficiency and accuracy of literature reviews. By leveraging the capabilities of large language models (LLMs), TR addresses the inefficiencies and error-proneness of traditional review methods, especially in rapidly evolving fields. The framework significantly improves literature review processes by integrating advanced text mining and machine learning techniques. Through a case study approach, TR offers a step-by-step methodology that begins with query generation and refinement, followed by semi-automated text mining to identify relevant articles. LLMs are then employed to extract and categorize key themes and concepts, facilitating an in-depth literature analysis. This approach demonstrates the transformative potential of natural language processing in literature reviews. With an average similarity of 69.56% between generated and indexed keywords, TR effectively manages the growing volume of scientific publications, providing researchers with robust strategies for complex text synthesis and advancing knowledge in various domains. An expert analysis highlights a positive Fleiss’ Kappa score, underscoring the significance and interpretability of the results.

Funder

National Agency for Research and Development (ANID)/Scholarship Program/DOCTORADO NACIONAL

Beca INF-PUCV

VINCI-DI

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3