Affiliation:
1. Fraunhofer Institute for Process Engineering and Packaging (IVV), Giggenhauser Straße 35, 85354 Freising, Germany
Abstract
Bisphenol A (BPA) is a known substance that is found in food contact materials as an intentionally added as well as a non-intentionally added substance. Traces of BPA were found as a non-intentionally added substance in recycled PET (rPET). In 2023, the EFSA proposed a new TDI of 0.0002 µg/kg bw/d, which is lower than the previous (temporary) TDI of 4 µg/kg bw/d by a factor of 20,000. The TDI of 0.0002 µg/kg bw/d would translate for a default 60 kg person eating one kilogram of food into a migration limit of 0.012 µg/kg in the food. This very low migration limit is a challenge to measuring BPA levels in food. A solution is to use migration modeling to establish maximum concentrations in rPET for different food contact applications. Precise diffusion coefficients for BPA in PET were determined within this study by use of migration kinetics. In June 2024, the European Commission proposed a new migration threshold limit for BPA of 1 µg/kg, which should be understood as a detection limit. From the results of this study, it can be concluded that a BPA concentration in the PET bottle wall of 297 mg/kg (3% acetic acid), 255 mg/kg (10% ethanol), and 192 mg/kg (20% ethanol) after storage for 365 d at 25 °C is in compliance with the migration threshold limit of 1 µg/kg. These maximum concentrations are far above the measured BPA concentrations on rPET bottles in Europe between 2019 and 2023. Therefore, the new proposed migration threshold limit for BPA cannot be exceeded.