Tracking Method of GM-APD LiDAR Based on Adaptive Fusion of Intensity Image and Point Cloud

Author:

Xiao Bo12ORCID,Wang Yuchao12ORCID,Huang Tingsheng2ORCID,Liu Xuelian2ORCID,Xie Da2,Zhou Xulang2,Liu Zhanwen3,Wang Chunyang2ORCID

Affiliation:

1. School of Optoelectronic Engineering, Xi’an Technological University, Xi’an 710021, China

2. Xi’an Key Laboratory of Active Photoelectric Imaging Detection Technology, Xi’an Technological University, Xi’an 710021, China

3. School of Information Engineering, Chang’an University, Xi’an 710064, China

Abstract

The target is often obstructed by obstacles with the dynamic tracking scene, leading to a loss of target information and a decrease in tracking accuracy or even complete failure. To address these challenges, we leverage the capabilities of Geiger-mode Avalanche Photodiode (GM-APD) LiDAR to acquire both intensity images and point cloud data for researching a target tracking method that combines the fusion of intensity images and point cloud data. Building upon Kernelized correlation filtering (KCF), we introduce Fourier descriptors based on intensity images to enhance the representational capacity of target features, thereby achieving precise target tracking using intensity images. Additionally, an adaptive factor is designed based on peak sidelobe ratio and intrinsic shape signature to accurately detect occlusions. Finally, by fusing the tracking results from Kalman filter and KCF with adaptive factors following occlusion detection, we obtain location information for the central point of the target. The proposed method is validated through simulations using the KITTI tracking dataset, yielding an average position error of 0.1182m for the central point of the target. Moreover, our approach achieves an average tracking accuracy that is 21.67% higher than that obtained by Kalman filtering algorithm and 7.94% higher than extended Kalman filtering algorithm on average.

Funder

National Key R&D Program of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3