Variability in the Hydrological Processes of Six Typical Woodlands Based on Stable Isotopes in Subtropical Regions in Central China

Author:

Zhu Fangfang12,Li Yuchen12,Cheng Jinhua12

Affiliation:

1. College of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China

2. Key Laboratory of Soil and Water Conservation and Desertification Control of State Forestry Administration, Beijing 100083, China

Abstract

Changes in woodland characteristics induced by plants and soil greatly affect soil hydrological processes. Stable isotope technology and indoor soil moisture characteristic experiments were conducted at three rainfall levels (3.6, 23.5, and 49.8 mm) to investigate the hydrological processes under six woodlands (two pure forests and four mixed forests). The main influencing factors contributing to these changes were identified in a low mountain and hilly region in central China. The soil waterline equation in this area was soil water δD = 5.626 δ18O − 16.791 (R2 = 0.798). The slope and intercept in the soil waterline equation were smaller than the atmospheric waterline equation. From a temporal perspective, the soil moisture content varied in the same trend under different rainfall events, with the maximum and minimum values on the first day after rainfall and the day before rainfall, respectively. However, an overall trend that first increased and then decreased was observed. From a spatial perspective, the soil moisture content increased with soil depth, and the increase rate was in the order of 0–20 cm and 20–40 cm in different soil layers. The soil moisture content in mixed conifer broadleaved woodlands was high. The soil water δD and δ18O in mixed conifer broadleaved woodlands and underground soil were relatively depleted. The effects of soil water-holding capacity, particle size composition, slope, canopy closure, and other factors on soil hydraulic parameters were comprehensively analyzed. The results showed that the extremely coarse sand (1–2 mm) particle content was the main parameter affecting soil-saturated hydraulic conductivity Ks, whereas the slope was the main factor affecting soil water δD and δ18O. In needle-leaved forests, the soil water infiltration form was a rainwater and soil water mixture downward diffusion, whereas the rainwater replaced the original soil water in the needle and mixed conifer broadleaved forests.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3