Effects of thinning and understory removal on the soil water-holding capacity in Pinus massoniana plantations

Author:

Wang Ting,Xu Qing,Gao Deqiang,Zhang Beibei,Zuo Haijun,Jiang Jing

Abstract

AbstractForest management practices play an important role in regulating the soil water-holding capacity of plantation. However, most studies focus on soil water dynamics present during large-scale forest loss and afforestation events, while little is known about how soil water under different forest management practices responds to rainfall events and which factors mainly regulate soil water-holding capacity. In this study, a stable hydrogen isotope was used to explore the contribution of three natural rainfall events (8.9, 13.3 and 67.7 mm) to soil water (CRSW) in a Pinus massoniana plantation under four forest management practices (no thinning (NTN), understory removal (USR), light-intensity thinning (LIT) and heavy-intensity thinning (HIT)) in the Three Gorges Reservoir Area of the Yangtze River Basin in China. Furthermore, a structural equation model was employed to determine the effects of vegetation biomass and soil properties on the CRSW. The results showed that plantation soil under different forest management practices exhibited different water-holding capacities. Following light (8.9 mm) and moderate (13.3 mm) rainfall events, the CRSW in the HIT stand was slightly higher than that in the other stands. Following heavy (66.7 mm) rainfall event, the CRSW of most layers in USR stand was not different from the other three stands, while the CRSW in the LIT and NTN stands was significantly higher than that in the HIT stand in the 0–100 cm soil layers, suggesting that soil in the LIT and NTN stands had a greater water-holding capacity than that in the HIT stand. In addition, soil properties were the main factors directly affecting the CRSW, explaining 60% and 37% of the variation in the CRSW on the first and seventh days after heavy rainfall, respectively. Overall, compared to the HIT stand, the LIT and NTN stands showed greater capacity in retaining rainwater. Therefore, under expected global changes with frequent occurrences of extreme precipitation events, methods involving light-intensity and no thinning should be employed to build up soil and water conservation functions, which will be critical for keeping water-holding capacity and moderating floods.

Funder

Chinese Academy of Forestry

Ministry of Science and Technology of the people’s Republic of China

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3