Author:
Kibirige Daniel,Dobos Endre
Abstract
Soil water content or soil moisture content is considered one of the most critical properties of the soil for crop production, irrigation, and environmental studies. The technical development of soil moisture measurement devices is swift, but calibration among field conditions is still not entirely resolved. Accurate calibration requires samples taken right next to the sensor that disturbs the site and changes the soil conditions. Real field operation requires the probe to represent larger areas that have undisturbed soils around the probe. These would describe the parcel’s general soil conditions and start providing data from the time of installation. This study aimed to compare several potential solutions for off-site calibration of an operational EnviroScan sensor (Sentek Technologies, Stepney South, Australia). The performances of the default and soil texture-specific equations provided by the manufacturer were compared with the field and laboratory calibration approaches. Two statistical parameters, coefficient of determination (R2) and root square mean error (RMSE) was used to determine logarithmic model results. The results show that the default calibration equations in all three classes have relatively low performances with RMSE values of around 10–15 and R2 values ranging from 0.4 to 0.8. However, significant refinement was achieved by selecting texture-specific equations from the manufacturer’s libraries. The soil texture-specific equations of the EnviroScan often yielded quite satisfactory results, with RMSEs ranging between 2 and 4. Similar RMSE values were achieved from the laboratory calibration exercises, but the reapplication potential of these equations was often questionable due to the severely changed soil conditions of the laboratory processed soil compared to the field soil conditions.
Subject
Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry
Reference40 articles.
1. A Robust Calibration Method for Continental‐Scale Soil Water Content Measurements
2. Comparison of the accuracy of two soil moisture sensors and calibration models for different soil types on the loess plateau
3. Field evaluation of EnviroSCAN performance for monitoring soil water content compared with other soil moisture sensors under arid conditions;Al-Ghobari;Wulfenia J.,2013
4. Florinet Floriculture Newsletter-MOISTURE SENSORS A Review of Soil Moisture Sensors. Ohio, USAhttps://hcs.osu.edu/sites/hcs/files/imce/files/soil-moisture-sensors.pdf
5. Soil-water movement and balance in thick loess soils and its model simulation
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献