Off-Site Calibration Approach of EnviroScan Capacitance Probe to Assist Operational Field Applications

Author:

Kibirige Daniel,Dobos Endre

Abstract

Soil water content or soil moisture content is considered one of the most critical properties of the soil for crop production, irrigation, and environmental studies. The technical development of soil moisture measurement devices is swift, but calibration among field conditions is still not entirely resolved. Accurate calibration requires samples taken right next to the sensor that disturbs the site and changes the soil conditions. Real field operation requires the probe to represent larger areas that have undisturbed soils around the probe. These would describe the parcel’s general soil conditions and start providing data from the time of installation. This study aimed to compare several potential solutions for off-site calibration of an operational EnviroScan sensor (Sentek Technologies, Stepney South, Australia). The performances of the default and soil texture-specific equations provided by the manufacturer were compared with the field and laboratory calibration approaches. Two statistical parameters, coefficient of determination (R2) and root square mean error (RMSE) was used to determine logarithmic model results. The results show that the default calibration equations in all three classes have relatively low performances with RMSE values of around 10–15 and R2 values ranging from 0.4 to 0.8. However, significant refinement was achieved by selecting texture-specific equations from the manufacturer’s libraries. The soil texture-specific equations of the EnviroScan often yielded quite satisfactory results, with RMSEs ranging between 2 and 4. Similar RMSE values were achieved from the laboratory calibration exercises, but the reapplication potential of these equations was often questionable due to the severely changed soil conditions of the laboratory processed soil compared to the field soil conditions.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference40 articles.

1. A Robust Calibration Method for Continental‐Scale Soil Water Content Measurements

2. Comparison of the accuracy of two soil moisture sensors and calibration models for different soil types on the loess plateau

3. Field evaluation of EnviroSCAN performance for monitoring soil water content compared with other soil moisture sensors under arid conditions;Al-Ghobari;Wulfenia J.,2013

4. Florinet Floriculture Newsletter-MOISTURE SENSORS A Review of Soil Moisture Sensors. Ohio, USAhttps://hcs.osu.edu/sites/hcs/files/imce/files/soil-moisture-sensors.pdf

5. Soil-water movement and balance in thick loess soils and its model simulation

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3