Validation of a new gamma ray soil bulk density sensor

Author:

Pepers Karin H. J.1ORCID,van Egmond Fenny2,Koomans Ronald3,Teuling Kees2,Staats Gijs1,van Os Gera1

Affiliation:

1. Sustainable Soil Management Aeres University of Applied Sciences Dronten The Netherlands

2. Wageningen University and Research, Environmental Research Wageningen The Netherlands

3. Medusa Explorations Groningen The Netherlands

Abstract

AbstractSoil compaction and soil bulk density are key soil properties affecting soil health and soil ecosystem services like crop production, water retention and purification and carbon sequestration. The standard method for soil bulk density measurements using Kopecky rings is very labour intensive, time consuming and leaves notable damage to the field. Accurate data on bulk density are therefore scarce. To enable large‐scale data collection, we tested a new portable gamma ray sensor (RhoC) for in situ field and dry bulk density measurements up to 1 m depth. In this first validation study, measurements with the RhoC‐sensor were compared with classic ring sampling. Measurements were made in two agricultural fields in the Netherlands (a sandy clay loam and a sandy soil), with large variation in subsoil compaction. At 10 locations within each field, three soil density profiles were made. Each profile comprised six depth measurements (every 10 cm from 10 to 60 cm depth) using the RhoC‐sensor and Kopecky rings, resulting in 30 pairwise profiles and 180 measurements in total per field. At an average soil density of 1.5 g/cm3, the relative uncertainty was 9% for the Kopecky rings and 15% for the RhoC‐sensor. Because the RhoC‐sensor is easy and quick to use, the higher relative uncertainty can easily be compensated for by making additional measurements per location. In conclusion, the RhoC‐sensor allows a reliable quantitative in situ assessment of both field and dry bulk density. This provides the much‐needed possibility for rapid and accurate assessment of soil compaction. The acquisition of this data supports the calculation of soil organic carbon stocks and is indispensable for (national) soil monitoring, to assess soil health and to inform sustainable land management practices for sustained or improved soil health and provision of soil ecosystem services, such as requested in the proposed EU Directive on Soil Monitoring and Resilience.

Funder

Nederlandse Organisatie voor Wetenschappelijk Onderzoek

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3