Agricultural Land Use Changes as a Driving Force of Soil Erosion in the Velika Morava River Basin, Serbia

Author:

Srejić Tanja1,Manojlović Sanja1,Sibinović Mikica1ORCID,Bajat Branislav2ORCID,Novković Ivan1ORCID,Milošević Marko V.3,Carević Ivana1,Todosijević Mirjana4ORCID,Sedlak Marko G.1

Affiliation:

1. Faculty of Geography, University of Belgrade, 11000 Belgrade, Serbia

2. Faculty of Civil Engineering, University of Belgrade, 11000 Belgrade, Serbia

3. Geographical Institute “Jovan Cvijić” of the Serbian Academy of Sciences and Arts, 11000 Belgrade, Serbia

4. Faculty of Forestry, University of Belgrade, 11000 Belgrade, Serbia

Abstract

The erosion potential model was applied to estimate the soil erosion status of rural settlements during the years 1971 and 2011. We used univariate and bivariate local Moran’s I indices to detect and visualize the spatial clustering of settlements with respect to changes in erosion intensity and agricultural land use, as well as their mutual spatial correlation. The study area was differentiated into four statistically significant clusters using the calculated bivariate local Moran’s I indices. The statistical analysis examined the two largest clusters, i.e., the high–high and low–low clusters, and the results of the research indicate that the first four principal components explained 70.50% and 73.47% of the total variance, respectively. In the high–high cluster, the low rates of erosion reduction (average Index Z = 98) in the most significant types of rural settlements were determined according to demographic indicators (i.e., the higher population vitality and population density, the smaller share of the old population and the lower average age of the population) and the large proportion of arable land and Neogene sediments. In the low–low cluster, high erosion reduction rates were detected (average index Z = 64). In this cluster, the more statistically significant influence of natural conditions in combination with demographic–agrarian processes (i.e., the larger share of the old population, the higher average age of the population, the lower vitality index and deagrarization) were decisive factors in changing erosion intensity.

Funder

Ministry of Science, Technological Development and Innovation of Republic of Serbia

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3