Root Characteristics for Maize with the Highest Grain Yield Potential of 22.5 Mg ha−1 in China

Author:

Zhang Long12,Liu Guangzhou34,Yang Yunshan5,Guo Xiaoxia5,Jin Shuai1,Xie Ruizhi2,Ming Bo2ORCID,Xue Jun2ORCID,Wang Keru2,Li Shaokun2ORCID,Hou Peng1

Affiliation:

1. College of Agronomy, Ningxia University, Yinchuan 750021, China

2. Key Laboratory of Crop Physiology and Ecology, Institute of Crop Sciences, Beijing 100081, China

3. State Key Laboratory of North China Crop Improvement and Regulation, College of Agronomy, Hebei Agricultural University, Baoding 071001, China

4. Key Laboratory of Crop Growth Regulation of Hebei Province, College of Agronomy, Hebei Agricultural University, Baoding 071001, China

5. The Key Laboratory of Oasis Eco-Agriculture, Xinjiang Production and Construction Corps, College of Agronomy, Shihezi University, Shihezi 832000, China

Abstract

In maize (Zea mays L.), rational root structure promotes high grain yield under dense sowing conditions. This study was conducted at Qitai Farm in Xinjiang, China, in 2019 and 2021. A traditional wide and narrow row planting method was adopted, with wide rows of 0.7 m and narrow rows of 0.4 m. The cultivars DH618 and SC704, which have grain yield potentials of 22.5 and 15 Mg ha−1, respectively, were selected for study of the root structure and distribution characteristics under high-yield and high-density planting conditions. The highest yield (20.24 Mg ha−1) was achieved by DH618 under a planting density of 12 × 104 plants ha−1. The root structure of DH618 was well developed at that planting density, and the root dry weight (RDW) was 17.49 g plant−1 and 14.65 g plant−1 at the silking and maturity stages, respectively; these values were 7.56% and 11.86% higher, respectively, than those of SC704. At the silking stage, the proportions of RDW at soil depths of 0–10, 10–20, 20–40, and 40–60 cm were 66.29%, 11.83%, 16.51%, and 5.38%, respectively, for DH618; over the 20–60 cm soil layer, this was an average of 4.04% higher than the RDW of SC704. At maturity, the proportions of RDW at soil depths of 0–10, 10–20, 20–40, and 40–60 cm were 61.40%, 11.19%, 17.19%, and 10.21%, respectively, for DH618, which was an average of 9.59% higher than that of SC704 over the 20–60 cm soil layer. At maturity, DH618 roots were mainly distributed in the narrow rows, accounting for 72.03% of the root structure; this was 9.53% higher than the roots of SC704. At silking and maturity, the root weight densities of DH618 were 471.98 g m−3 and 382.98 g m−3, respectively (5.18% and 5.97% higher, respectively, than the root weight densities of SC704). The root lengths of DH618 were 239.72 m plant−1 and 199.04 m plant−1 at the silking and maturity stages, respectively; these were 16.45% and 25.39% higher, respectively, than the root lengths of SC704. The root length densities were 0.58 cm cm−3 and 0.46 cm cm−3 at the silking and maturity stages, respectively, and these were 16.86% and 17.08% higher, respectively, than the root length densities of SC704. This study indicated that the maize hybrid DH618 had a more developed root structure with increased root distribution in the deep soil and narrow rows under high-density planting compared to cultivar SC704, contributing to high grain yield under dense planting.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

National Basic Research Program of China

Basic Scientific Research Fund of Chinese Academy of Agricultural Sciences

Agricultural Science and Technology Innovation Program

Central Public-interest Scientific Institution Basal Research Fund

Modern Agro-industry Technology Research System in China

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3