Effects of Five–Year Inorganic and Organic Fertilization on Soil Phosphorus Availability and Phosphorus Resupply for Plant P Uptake during Maize Growth

Author:

Zhang Jingjing1,Wen Jiong2,Zhang Tuo1,Zhang Yang12,Peng Zhi2,Tang Chunchun2,Wang Yanan12,Su Shiming12,Zhang Nan1,Zeng Xibai12

Affiliation:

1. Key Laboratory of Agro–Environment, The Ministry of Agriculture of China, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China

2. Yueyang Agricultural Environment Scientific Experiment Station, Ministry of Agriculture, Yueyang 414000, China

Abstract

A better understanding of the P dynamic resupply roles of fertilization from soil solids to solution is urgently required to optimize sustainable P fertilizer management practices for efficient supply. A five–year fertilization experiment was used to investigate the effects on soil P fractions and availability, the kinetic P resupply based on a novel simulation technique (Diffusive gradients in thin films (DGT) and DGT–induced fluxes in sediments and soils (DIFS) ) and to identify dominant factors during the maize season under five treatments (no fertilizer (CK), chemical fertilizer (NPK), chemical fertilizer combined with bone meal fertilizer (NPKC), crop straw (NPKS) and bioorganic fertilizer (NPKM)). The results showed that the NPKC and NPKM treatments had higher enhancement effects on Olsen–P and organic P and inorganic Ca2–P, Ca8–P, Al–P and Fe–P at maize growth stages, and they buffered pH decrease to delay the substantial Fe–P and Al–P release until a late stage. Inorganic Ca2–P, Ca8–P, Al–P and Fe–P heavily effected the Olsen–P levels. The NPKS, NPKC and NPKM treatments yielded higher CDGT–P levels and a stronger resupply capacity, reflected by higher R and CE/Csoln and smaller Tc values. The simulation and path model results revealed that the maize plant P uptake was determined by soil P resupply and an inorganic P supply pool. They were positively dominated by soil organic matter (SOM). Our results suggested that organic fertilization, especially NPKC and NPKM treatments, provided greater enhancement effects on the P supply pool and P resupply for higher plant P uptake, identifying them as highly effective P management practices for developing sustainable agriculture.

Funder

National Natural Science Foundation of China

National Key R&D Program of China

Central Public–interest Scientific Institution Basal Research Fund

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3