Agricultural Combine Remaining Value Forecasting Methodology and Model (and Derived Tool)

Author:

Herranz-Matey Ivan1ORCID,Ruiz-Garcia Luis1ORCID

Affiliation:

1. Departamento de Ingeniería Agroforestal, ETSIAAB, Universidad Politécnica de Madrid, Av. Puerta de Hierro 2, 28040 Madrid, Spain

Abstract

Harvesting is an integral component of the agricultural cycle, necessitating the use of high-performance grain harvester combines, which are utilized for a short period each year. Given the seasonality and significant cost involved, list prices ranging from a quarter to almost a million euros, a fact-based investment assessment decision-making process is essential. However, there is a paucity of research studies forecasting the remaining value of grain harvester combines in recent years. This study proposes a straightforward methodology based on public information that employs various parametric and non-parametric models to develop a robust and user-friendly model that can assist decision makers, such as farmers, contractors, sellers, and finance and insurance entities, in optimizing their harvesting operations. The model employs a power regression mode, with RMSE of 1.574 and RSqAdj of 0.8457 results, to provide accurate and reliable insights for informed decision-making. The robust model transparency enables us to easily create a mainstreamed spreadsheet-based dashboard tool.

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

Reference25 articles.

1. FAO (2016). Handbook on Agricultural Cost of Production Statistics, FAO.

2. Strivastava, A.K., Goering, C.E., Rohrbach, R.P., and Buckmaster, D.R. (2006). Engineering Principles of Agricultural Machines, American Society of Agricultural and Biological Engineers. Chapter 15.

3. Strivastava, A.K., Goering, C.E., Rohrbach, R.P., and Buckmaster, D.R. (2006). Engineering Principles of Agricultural Machines, American Society of Agricultural and Biological Engineers. Chapter 12.

4. AXEMA (2022). Economic Report, AXEMA.

5. CEMA (2022). European Agricultural Machinery Industry Key Figures, CEMA.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3