Enhancing Predictive Accuracy in European Agricultural Tractor Residual Value Estimation: A Double Square Root Regression Reappraisal

Author:

Herranz-Matey Ivan1ORCID,Ruiz-Garcia Luis1ORCID

Affiliation:

1. Departamento de Ingeniería Agroforestal, ETSIAAB, Universidad Politécnica de Madrid, Av. Puerta de Hierro, 2, 28040 Madrid, Spain

Abstract

Determining the residual value of tractors is imperative for comprehensive cost analyses within the agricultural machinery sector. Despite numerous studies offering various models and independent variables, the double square root regression approach, originally developed by Cross and Perry and adapted by ASABE for North American contexts, has been widely utilized. However, factors such as the complexity of OEM portfolios, steep price increases due to compliance with diesel emission regulations, and limited data availability in Europe and its market specificities necessitate improvements in predictive accuracy. This study evaluates different tractor cohort alternatives beyond engine horsepower to enhance predictive robustness. Incorporating brand and powertrain type alongside engine power significantly improved model performance and exhibited the strongest robustness, as evidenced by reduced the root mean square error (RMSE) and increased R-squared values. These findings contribute to the refinement of tractor residual value estimation models, offering valuable insights for stakeholders in the agricultural machinery industry.

Publisher

MDPI AG

Reference36 articles.

1. FAO (2016). Handbook on Agricultural Cost of Production Statistics, FAO.

2. Kay, R.D., Edwards, W.M., and Duffy, P.A. (2020). Farm Management, McGraw-Hill. [7th ed.].

3. Kastens, T. (1997). Farm Machinery Operations Cost Calculations, Kansas State University Agricultural Experiment Station and Cooperative Extension Service.

4. ASABE (1999). Agricultural Machinery Management Data ASAE Standard EP496.2 Agricultural Machinery Management, ASABE.

5. ASABE (2020). Agricultural Machinery Management Data ASAE Standard D497.7 Agricultural Machinery Management Data, American Society of Agricultural and Biological Engineers.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3