Affiliation:
1. Key Laboratory of Forage Processing, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
2. School of Environmental Engineering, Yellow River Conservancy Technical Institute, Zhengzhou 450046, China
3. Henan Key Laboratory of Grassland Resources Innovation and Utilization, Zhengzhou 450046, China
4. Herbage Engineering Research Center of Henan Province, Zhengzhou 450046, China
Abstract
Salt stress poses a significant threat to crop yields worldwide. Melatonin (MT), an endogenous hormone synthesized in plants, has emerged as a crucial player in plant responses to various abiotic stresses, including drought, salinity, heat, and cold. However, the precise molecular mechanisms underlying MT-mediated abiotic stress responses remain incompletely understood. To elucidate the key genes and pathways involved in MT-mediated alleviation of salt stress, we conducted physiological, biochemical, and transcriptomic analyses on alfalfa seedlings. Our results demonstrated that alfalfa seedlings treated with melatonin exhibited higher germination rates, longer bud lengths, and greater fresh weights compared to those subjected to salt stress alone. Furthermore, the levels of malondialdehyde (MDA) and superoxide anion (O2−) were reduced, while the activities and contents of antioxidant enzymes such as superoxide dismutase (SOD), peroxidase (POD), and glutathione (GSH) increased in response to melatonin treatment. Transcriptome analysis revealed 2181 differentially expressed genes (DEGs) in the salt-treated group, with 780 upregulated and 1401 downregulated genes. In contrast, the MT-treated group exhibited 4422 DEGs, including 1438 upregulated and 2984 downregulated genes. Functional annotation and pathway enrichment analysis indicated that DEGs were primarily involved in the biosynthesis of flavonoids, isoflavones, plant hormones, glutathione (GSH), soluble sugars, and other substances, as well as in ABC transporter and MAPK signaling pathways. Notably, the MT-treated group showed greater enrichment of DEGs in these pathways, suggesting that MT mitigates salt stress by modulating the expression of genes related to phytohormones and antioxidant capacity. Overall, our findings provide valuable insights into the molecular mechanisms underlying MT-mediated salt tolerance in alfalfa, with important implications for breeding salt-tolerant alfalfa and other crops.
Funder
the National Science Foundation of China
the China Postdoctoral Science Foundation
the Science and Technology Innovation 2030-Major Project
Henan Science and Technology Research Projects
President Fund Project of Guangdong Academy of Agricultural Sciences
the China Agriculture Research System
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献