Osmotic Stress or Ionic Composition: Which Affects the Early Growth of Crop Species More?

Author:

Ludwiczak AgnieszkaORCID,Osiak Monika,Cárdenas-Pérez Stefany,Lubińska-Mielińska SandraORCID,Piernik AgnieszkaORCID

Abstract

Salinization is a key soil degradation process. An estimated 20% of total cultivated lands and 33% of irrigated agricultural lands worldwide are affected by high salinity. Much research has investigated the influence of salt (mainly NaCl) on plants, but very little is known about how this is related to natural salinity and osmotic stress. Therefore, our study was conducted to determine the osmotic and ionic salt stress responses of selected C3 and C4 cultivated plants. We focused on the early growth stages as those critical for plant development. We applied natural brine to simulate natural salinity and to compare its effect to NaCl solution. We assessed traits related to germination ability, seedlings and plantlet morphology, growth indexes, and biomass and water accumulation. Our results demonstrate that the effects of salinity on growth are strongest among plantlets. Salinity most affected water absorption in C3 plants (28% of total traits variation), but plant length in C4 plants (17–27%). Compensatory effect of ions from brine were suggested by the higher model plants’ growth success of ca 5–7% under brine compared to the NaCl condition. However, trait differences indicated that osmotic stress was the main stress factor affecting the studied plants.

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3