Spatiotemporal Variation in the Land Use/Cover of Alluvial Fans in Lhasa River Basin, Qinghai–Tibet Plateau

Author:

Chen Tongde12ORCID,Jiao Juying2,Wei Wei3,Li Jianjun2ORCID,Zhang Ziqi2,Yang Haizhen1,Ma Huifang1

Affiliation:

1. Laboratory of Land Resources Surveying and Planning, School of Politics and Public Administration, Qinghai Minzu University, Xining 810007, China

2. State Key Laboratory of Soil Erosion and Dry Land Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling 712100, China

3. School of Automation, Northwestern Polytechnical University, Xi’an 710072, China

Abstract

Alluvial fans are an important land resource with agricultural potential in Qinghai–Tibet Plateau. The spatiotemporal variation in land use/cover is an important indicator to understand the value of alluvial fans and protect and make scientific use of such fans. In this study, the spatiotemporal characteristics of land use/cover are determined by analysing the land use/cover changes of alluvial fans in the Lhasa River Basin (LRB) at different times, counties/districts, altitudes, and gradients. Results show that the area of cultivated land and the artificial land provided by alluvial fans for LRB has continuously increased. In 2000, 2010, and 2020, 17.72%, 21.84%, and 24.17% of cultivated land and 7.89%, 7.51%, and 25.24% of artificial land in LRB were provided by alluvial fans, respectively. At all altitudes and slopes, cultivated land and artificial land are increasing but the increasing part is basically due to the massive loss of grassland. The spatiotemporal changes in all land use/cover types of alluvial fans were dominated by human activities, although they were also influenced by natural factors to some degree.

Funder

the Second Tibetan Plateau Scientific Expedition and Research Program

Strategic Priority Research Program of Chinese Academy of Sciences

Ministry of Science and Technology of the People’s Republic of China

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3