Non-Destructive Detection of Chicken Freshness Based on Electronic Nose Technology and Transfer Learning

Author:

Xiong Yunwei1,Li Yuhua1,Wang Chenyang1,Shi Hanqing1,Wang Sunyuan1,Yong Cheng1,Gong Yan2,Zhang Wentian3,Zou Xiuguo1ORCID

Affiliation:

1. College of Artificial Intelligence, Nanjing Agricultural University, Nanjing 210031, China

2. College of Engineering, Northeastern University, Boston, MA 02115, USA

3. Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW 2007, Australia

Abstract

As a non-destructive detection method, an electronic nose can be used to assess the freshness of meats by collecting and analyzing their odor information. Deep learning can automatically extract features and uncover potential patterns in data, minimizing the influence of subjective factors such as selecting features artificially. A transfer-learning-based model was proposed for the electronic nose to detect the freshness of chicken breasts in this study. First, a 3D-printed electronic nose system is used to collect the odor data from chicken breast samples stored at 4 °C for 1–7 d. Then, three conversion to images methods are used to feed the recorded time series data into the convolutional neural network. Finally, the pre-trained AlexNet, GoogLeNet, and ResNet models are retrained in the last three layers while being compared to classic machine learning methods such as K Nearest Neighbors (KNN), Random Forest (RF), and Support Vector Machines (SVM). The final accuracy of ResNet is 99.70%, which is higher than the 94.33% correct rate of the popular machine learning model SVM. Therefore, the electronic nose combined with conversion to images shows great potential for using deep transfer learning methods for chicken freshness classification.

Funder

Jiangsu Agriculture Science and Technology Innovation Fund of China

Program for International S&T Cooperation Projects of Jiangsu, China

National University Student Entrepreneurship Practice Program of China

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3