Modelling the Geographical Distribution Pattern of Apple Trees on the Loess Plateau, China

Author:

Xu Wei12,Miao Yuqi3,Zhu Shuaimeng4,Cheng Jimin25,Jin Jingwei5

Affiliation:

1. School of Humanities and Social Sciences, Jiangsu University of Science and Technology, Zhenjiang 212000, China

2. Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Xianyang 712100, China

3. College of Grassland Agriculture, Northwest Agriculture and Forestry University, Xianyang 712100, China

4. School of Surveying and Land Information Engineering, Henan Polytechnic University, Jiaozuo 454000, China

5. Institute of Soil and Water Conservation, Northwest Agriculture and Forestry University, Xianyang 712100, China

Abstract

The Loess Plateau, known for its fragile ecosystems, is one of the traditional apple-producing regions in China. Although some management measures are needed to enhance sustainable agriculture in response to the rising pressure of climate change, the geographic distribution of apple trees considering multiple variables has not been considered. In this study, we used three software (the maximum entropy model, IDRISI, and ArcGIS) to simulate the potential distribution of suitable habitats and range shifts of apple trees in the near present and near future (i.e., the 2030s and the 2050s) under two climate scenarios (the Shared Socioeconomic Pathways (SSP)1-26 and SSP5-85), while taking a variety of environmental factors into account (e.g., temperature, precipitation, and terrain). After optimization, the class unsuitable habitat (CUH) changed the potential distribution pattern of apple trees on the Loess Plateau. Currently, the areas of lowly suitable habitat (LSH), moderately suitable habitat (MSH), highly suitable habitat (HSH), and CUH were 7.66 × 104, 2.80 × 104, 0.23 × 104, and 18.05 × 104 km2, respectively. Compared to the centroid estimated under the climate of 1970–2000, the suitability range of apple trees was displaced to the northwest in both the 2030s and the 2050s in SSP5-85 (i.e., 63.88~81.30 km), causing a larger displacement in distance than SSP1-26 (i.e., 40.05~50.32 km). This study demonstrates the possible changes in the spatial distribution of apple trees on the Loess Plateau in the near future and may provide a strong basis for future policy making.

Funder

Key Research and Development Program of Shaanxi Province

Natural Science Foundation of China

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3