A Cascaded Individual Cow Identification Method Based on DeepOtsu and EfficientNet

Author:

Zhang Ruihong1,Ji Jiangtao1,Zhao Kaixuan1,Wang Jinjin1,Zhang Meng1,Wang Meijia2

Affiliation:

1. College of Agricultural Equipment Engineering, Henan University of Science and Technology, Luoyang 471023, China

2. School of Electronic Information and Artificial Intelligence, Shannxi University of Science & Technology, Xi’an 710021, China

Abstract

Precision dairy farming technology is widely used to improve the management efficiency and reduce cost in large-scale dairy farms. Machine vision systems are non-contact technologies to obtain individual and behavioral information from animals. However, the accuracy of image-based individual identification of dairy cows is still inadequate, which limits the application of machine vision technologies in large-scale dairy farms. There are three key problems in dairy cattle identification based on images and biometrics: (1) the biometrics of different dairy cattle may be similar; (2) the complex shooting environment leads to the instability of image quality; and (3) for the end-to-end identification method, the identity of each cow corresponds to a pattern, and the increase in the number of cows will lead to a rapid increase in the number of outputs and parameters of the identification model. To solve the above problems, this paper proposes a cascaded dairy individual cow identification method based on DeepOtsu and EfficientNet, which can realize a breakthrough in dairy cow group identification accuracy and speed by binarization and cascaded classification of dairy cow body pattern images. The specific implementation steps of the proposed method are as follows. First, the YOLOX model was used to locate the trunk of the cow in the side-looking walking image to obtain the body pattern image, and then, the DeepOtsu model was used to binarize the body pattern image. After that, primary classification was carried out according to the proportion of black pixels in the binary image; then, for each subcategory obtained by the primary classification, the EfficientNet-B1 model was used for secondary classification to achieve accurate and rapid identification of dairy cows. A total of 11,800 side-looking walking images of 118 cows were used to construct the dataset; and the training set, validation set, and test set were constructed at a ratio of 5:3:2. The test results showed that the binarization segmentation accuracy of the body pattern image is 0.932, and the overall identification accuracy of the individual cow identification method is 0.985. The total processing time of a single image is 0.433 s. The proposed method outperforms the end-to-end dairy individual cow identification method in terms of efficiency and training speed. This study provides a new method for the identification of individual dairy cattle in large-scale dairy farms.

Funder

National Natural Science Foundation of China

National Key R&D Plan Key projects of Scientific and Technological Innovation Cooperation between Governments

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3